1. Luht K, Eensoo D, Tooding LM, Harro J (2017). The association of measures of the serotonin system, personality, alcohol use, and smoking with risk-taking traffic behavior in adolescents in a longitudinal study. Nord J Psychiatry. 2018 Jan;72(1):9-16. doi: 10.1080/08039488.2017.1368702. Epub 2017 Aug 26.

    https://www.ncbi.nlm.nih.gov/pubmed/28844162
  2. Fernàndez-Castillo N, Gan G, ... Cormand B (2017). RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior.Eur Neuropsychopharmacol. 2017 Nov 23. pii: S0924-977X(17)32003-5. doi: 10.1016/j.euroneuro.2017.11.012. [Epub ahead of print]

    https://www.ncbi.nlm.nih.gov/pubmed/29174947
  3. Carreño Gutiérrez H, O’Leary A, ..., Norton WHJ (2017). Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behaviour. Eur Neuropsychopharmacol. 2017 Sep 23. pii: S0924-977X(17)30906-9. doi: 10.1016/j.euroneuro.2017.09.004. [Epub ahead of print]

    https://www.ncbi.nlm.nih.gov/pubmed/28951000
  4. Forero A, Rivero O, ..., Lesch KP (2017). Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Front Cell Neurosci. 2017 Sep 26;11:307.doi: 10.3389/fncel.2017.00307. eCollection 2017. PubMed PMID: 29018333; PubMed Central PMCID: PMC5623013.

    https://www.ncbi.nlm.nih.gov/pubmed/29018333
  5. Kiive E, Laas K, ..., Harro J (2017). Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele. Eur Neuropsychopharmacol. 2017 Aug;27(8):816-827. doi: 10.1016/j.euroneuro.2017.02.003. Epub 2017 Feb 23.

    https://www.ncbi.nlm.nih.gov/pubmed/28237505
  6. Laas K, Kiive E, ..., Harro J (2017). Nice guys: Homozygocity for the TPH2 -703G/T (rs4570625) minor allele promotes low aggressiveness and low anxiety. J Affect Disord. 2017 Jun;215:230-236. doi: 10.1016/j.jad.2017.03.045. Epub 2017 Mar 19.

    https://www.ncbi.nlm.nih.gov/pubmed/28342337
  7. Van Ewijk H, Bralten J ..., Franke B (2017). Female-specific association of NOS1 genotype with white matter microstructure in ADHD patients and controls. Journal of Child Psychology and Psychiatry 58:8 (2017), pp 958–966. doi:10.1111/jcpp.12742. Epub 2017 Jun 7.

    https://www.ncbi.nlm.nih.gov/pubmed/28219628
  8. Hoogman M, ..., Franke B (2017). Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017 Apr;4(4):310-319. doi: 10.1016/S2215-0366(17)30049-4. Epub 2017 Feb 16.

    https://www.ncbi.nlm.nih.gov/pubmed/28219628
  9. Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B (2017). Brain imaging genetics in ADHD and beyond − mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev. 2017 Jan 31.pii: S0149-7634(16)30478-X. doi: 10.1016/j.neubiorev.2017.01.013.

    http://www.sciencedirect.com/science/article/pii/S014976341630478X
  10. Martín-García E, Fernández-Castillo N, Burokas A, Gutiérrez-Cuesta J, Sánchez-Mora C, Casas M, Ribasés M, Cormand B, Maldonado R (2015). Frustrated expected reward induces differential transcriptional changes in the mouse brain. Addict Biol.. 2015 Jan; 20(1): 22-37. doi: 10.1111/adb. 12188. Epub2014 Oct 6.

    http://www.ncbi.nlm.nih.gov/pubmed/25288320
  11. Cline BH, Anthony DC, Lysko A, Dolgov O, Anokhin K, Schroeter C, Malin D, Kubatiev A, Steinbusch HW, Lesch KP, Strekalova T (2014). Lasting downregulation of the lipid peroxidation enzymes in the prefrontal cortex of mice susceptible to stress-induced anhedonia. Behavioural Brain Research, 2014 Apr 28. doi: 10.1016/j.bbr.2014.04.037. [Epub ahead of print].

    http://www.ncbi.nlm.nih.gov/pubmed/24786329
  12. Lisa Gutknecht et al. (2015). Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice. Psychopharmacology, 2015 Feb. doi: 10.1007/s00213-015-3879-0

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480945
  13. Jones LI, Norton WH (2014). Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behavioural Brain Research, 2014 Jun 2. doi: 10.1016/j.bbr.2014.05.055. [Epub ahead of print]

    http://www.ncbi.nlm.nih.gov/pubmed/24954772
  14. Kiser DP, Rivero O, Lesch KP (2014). The genetics of neurodevelopmental disorders in the era of whole-genome sequencing: Unveiling the dark matter. J Child Psychol Psychiatry, in press.
  15. Laas K, Reif A, Akkermann K, Kiive E, Lesch KP, Veidebaum T, Harro J (2014). Neuropeptide S receptor gene variant and environment: contribution to alcohol use disorders and alcohol consumption. Addiction Biology, 2014 Apr 23. doi: 10.1111/adb.12149. [Epub ahead of print]

    http://www.ncbi.nlm.nih.gov/pubmed/24754478
  16. Lesch KP (2014). Editorial: Illuminating the dark matter of developmental neuropsychiatric genetics - strategic focus for future research in child psychology and psychiatry. Journal of Child Psychology and Psychiatry, 2014 March, 55(3):201-203. doi: 10.1111/jcpp.12223.

    http://www.ncbi.nlm.nih.gov/pubmed/24552481
  17. Pomytkin IA, Cline BH, Anthony DC, Steinbusch HW, Lesch KP, Strekalova T (2014). Endotoxaemia resulting from decreased serotonin tranporter (5-HTT) function: A reciprocal risk factor for depression and insulin resistance? Behavioural Brain Research, 2014 May 9. doi: 10.1016/j.bbr.2014.04.049. [Epub ahead of print]

    http://www.ncbi.nlm.nih.gov/pubmed/24815315
  18. Schraut KG, Jakob SB, Weidner MT, Schmitt AG, Scholz CJ, Strekalova T, El Hajj N, Eijssen LMT, Domschke K, Reif A, Haaf T, Ortega G, Steinbusch HWM, Lesch KP, Van den Hove DL. Prenatal stress-induced programming of genome-wide promoter DNA  methylation in 5-HTT deficient mice. Translational Psychiatry, 2014 Oct 21. doi: doi: 10.1038/tp.2014.107.

    http://www.ncbi.nlm.nih.gov/pubmed/25335169
  19. Schwarz R, Reif A, Scholz CJ, Weissflog L, Schmidt B, Lesch KP, Jacob C, Reichert S, Heupel J, Volkert J, Kopf J, Hilscher M, Weber H, Kittel-Schneider S (2014). A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients.The World Journal of Biological Psychiatry, 2014 Aug 27:1-10. [Epub ahead of print]

    http://www.ncbi.nlm.nih.gov/pubmed/25162476
  20. Strekalova T, Evans M, Chernopiatko A, Couch Y, Costa-Nunes J, Cespuglio R, Chesson L, Vignisse J, Steinbusch HW, Anthony DC, Pomytkin I, Lesch KP (2014). Deuterium content of water increases depression susceptibility: The potential role of a serotonin-related mechanism. Behavioural Brain Research, 2015 Jan 15. doi: 10.1016/j.bbr.2014.07.039. [Epub 2014 Aug 1].

    http://www.ncbi.nlm.nih.gov/pubmed/25092571
  21. Vaht M, Merenäkk L, Mäestu J, Veidebaum T, Harro J (2014). Serotonin transporter gene promoter polymorphism (5-HTTLPR) and alcohol use in general population: interaction effect with birth cohort. Psychopharmacology (Berl), 2014 Jul; 231(13):2587-94. doi: 10.1007/s00213-013-3427-8.

    http://www.ncbi.nlm.nih.gov/pubmed/24408213
  22. Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV (2015). Genetics of aggressive behaviour: An overview.. Am J Med Genet B Neuropsychiatr Genet., 2015 Sept 8. doi: 10.1002/ajmg.b.32364.

    http://www.ncbi.nlm.nih.gov/pubmed/26345359
  23. Aebi M, van Donkelaar MM, Poelmans G, Buitelaar JK, Sonuga-Barke EJ, Stringaris A; IMAGE consortium, Faraone SV, Franke B, Steinhausen HC, van Hulzen KJ (2015). Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder.. Am J Med Genet B Neuropsychiatr Genet., 2015 Jul 16. doi: 10.1002/ajmg.b.32346.

    http://www.ncbi.nlm.nih.gov/pubmed/26184070
  24. Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WH. (2015). Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways.. Am J Med Genet B Neuropsychiatr Genet., 2015 Aug 19. doi: 10.1002/ajmg.b.32358.

    http://www.ncbi.nlm.nih.gov/pubmed/26284957
  25. Zhang-James Y, Faraone SV. (2015). Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.. Am J Med Genet B Neuropsychiatr Genet., 2015 Aug 19. doi: 10.1002/ajmg.b.32363.

    http://www.ncbi.nlm.nih.gov/pubmed/26288127
  26. Fernàndez-Castillo N, Cormand B. (2015). Aggressive behavior in humans: genes and pathways ientified through association studies.. Am J Med Genet B Neuropsychiatr Genet., 2015 Jul. doi: 10.1002/ajmg.b.32419.

    http://www.ncbi.nlm.nih.gov/pubmed/26773414
  27. Brevik et al. (2016). Genome-Wide Analyses of Aggressiveness in Attention-Deficit Hyperactivity Disorders.. Am J Med Genet B Neuropsychiatr Genet., 2016 Jul. doi: 10.1002/ajmg.b.32434.

    http://www.ncbi.nlm.nih.gov/pubmed/27021288
  28. Fernàndez-Castillo et al. (2015). Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Translational Psychiatry., 2015 doi: 10.1038/tp.2015.158.

    https://www.ncbi.nlm.nih.gov/pubmed/26506053
  29. Asherson et al. (2016). The genetics of aggression: Where are we now?. Am J Med Genet B Neuropsychiatr Genet., 2016 doi: 10.1002/ajmg.b.32450.

    https://www.ncbi.nlm.nih.gov/pubmed/27061441
  30. Zayats et al. (2016). Exome chip analyses in adult attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet., 2016 doi: 10.1038/tp.2016.196.

    https://www.ncbi.nlm.nih.gov/pubmed/27754487
  31. Holz et al. (2016). Ventral striatum and amygdala activity serve as convergence sites for childhood adversity and conduct disorder. Soc Cogn Affect Neurosci, 2016., doi: 10.1093/scan/nsw120

    https://www.ncbi.nlm.nih.gov/pubmed/27694318
  32. Holz et al. (2016). Gene x environment interactions in conduct disorder: Implications for future treatments. Neurosci Biobehav Rev, 2016., doi: 10.1016/j.neubiorev.2016.08.017

    https://www.ncbi.nlm.nih.gov/pubmed/27545756
  33. Grünwald et al. (2016). Functional Impact of An ADHD-Associated DIRAS2 Promoter Polymorphism. Neuropsychopharmacology, 2016., doi: 10.1038/npp.2016.113

    https://www.ncbi.nlm.nih.gov/pubmed/27364329
  34. van Hulzen et al. (2016). Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biological Psychiatry, 2016 doi: 10.1016/j.biopsych.2016.08.040

    https://www.ncbi.nlm.nih.gov/pubmed/27890468
  35. Mooney et al. (2016). Pathway analysis in attention deficit hyperactivity disorder: An ensemble approach. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016 doi: 10.1002/ajmg.b.32446

    https://https://www.ncbi.nlm.nih.gov/pubmed/27004716
  36. Freitag et al. (2016). The role of ASTN2 variants in childhood and adult ADHD, comorbid disorders and associated personality traits. Journal of Neural Transmission, 2016 doi: 10.1007/s00702-016-1553-2.

    https://www.ncbi.nlm.nih.gov/pubmed/27138430
  37. Kittel-Schneider et al. (2016). DGKH genetic risk variant influences gene expression in bipolar affective disorder. Journal of Affective Disorders, 2016 doi: 10.1016/j.jad.2016.03.041.

    https://www.ncbi.nlm.nih.gov/pubmed/27016658
  38. Kittel-Schneider et al. (2016). Cytogenetic Effects of Chronic Methylphenidate Treatment and Chronic Social Stress in Adults with Attention-Deficit/Hyperactivity Disorder. Pharmacopsychiatry., 2016 doi: 10.1055/s-0035-1569361.

    https://www.ncbi.nlm.nih.gov/pubmed/26926233
  39. Kittel-Schneider et al. (2015). Multi-level biomarker analysis of nitric oxide synthase isoforms in bipolar disorder and adult ADHD. Journal of Psychopharmacology., 2015 doi: 10.1177/0269881114555251.

    https://www.ncbi.nlm.nih.gov/pubmed/25320160
  40. Candemir et al. (2016). Interaction of NOS1AP with the NOS-I PDZ domain: Implications for schizophrenia-related alterations in dendritic morphology. European Neuropsychopharmacology., 2016 doi: 10.1016/j.euroneuro.2016.01.008.

    https://www.ncbi.nlm.nih.gov/pubmed/26861996
  41. Freudenberg et al. (2014). Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders. Genes, Brain and Behaviour., 2014 doi: 10.1111/gbb.12193.

    https://www.ncbi.nlm.nih.gov/pubmed/25612209
  42. Freudenberg et al. (2015). The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity?. Neuroscience and Biobehavioural Reviews., 2015 doi: 10.1016/j.neubiorev.2015.03.005.

    https://www.ncbi.nlm.nih.gov/pubmed/25783220
  43. Sánchez-Mora et al. (2015). Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hypeeractivity disorder. American Journal of Medical Genetics B Neuropsychiatric Genetics., 2015 doi: 10.1002/ajmg.b.32340.

    https://www.ncbi.nlm.nih.gov/pubmed/26174753
  44. Cabana-Dominguez et al. (2016). Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Scientific Report., 2016 doi: 10.1038/srep31033.
  45. Toverud Landaas et al. (2016). Vitamin levels in adults with ADHD;. BJPsych Open., 2016 doi: 10.1192/bjpo.bp.116.003491
  46. Lehto et al. (2014). Effect of tryptophan hydroxylase-2 gene polymorphism G-703 T on personality in a population representative sample. Prog Neuropsychopharmacol Biol Psychiatry, 2014 doi: 10.1016/j.pnpbp.2014.10.005.

    https://www.ncbi.nlm.nih.gov/pubmed/25455586
  47. Lehto et al. (2016). BDNF Val66Met genotype and neuroticism predict life stress: A longitudinal study from childhood to adulthood. European Neuropsychopharmacology, 2016 doi: 10.1016/j.euroneuro.2015.12.029.

    https://www.ncbi.nlm.nih.gov/pubmed/26738427
  48. Laas et al. (2015). Further evidence for the association of the NPSR1 gene A/T polymorphism (Asn107Ile) with impulsivity and hyperactivity. Journal of Psychopharmacology, 2015 doi: 10.1177/0269881115573803.

    https://www.ncbi.nlm.nih.gov/pubmed/25744621
  49. Kiive et al. (2014). The interaction effect of the tryptophan hydroxylase-2 G-703T genotype and stressful life events on inattentive and hyperactive behaviour in adolescents. World Congress of Psychiatric Genetics, 2014
  50. Vaht et al. (2016). A functional vesicular monoamine transporter 1 (VMAT1) gene variant is associated with affect and the prevalence of anxiety, affective and alcohol use disorders in a longitudinal population-representative birth cohort study. International Journal of Neuropsychopharmacology , 2016 doi: 10.1093/ijnp/pyw013.

    https://www.ncbi.nlm.nih.gov/pubmed/26861143
  51. Vaht et al. (2016). Oxytocin receptor gene variation rs53576 and alcohol abuse in a longitudinal population representative study. Psychoneuroendocrinology, 2016 doi: 10.1016/j.psyneuen.2016.09.018.

    https://www.ncbi.nlm.nih.gov/pubmed/27716573
  52. Vaht et al. (2016). A functional neuregulin-1 gene variant and stressful life events: Effect on drug use in a longitudinal population-representative cohort study. Journal of Psychopharmacology , 2016 doi: 10.1177/0269881116655979.

    https://www.ncbi.nlm.nih.gov/pubmed/27353026
  53. Harro et al. (2016). The role of MAO in personality and drug use. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2016 doi: 10.1016/j.pnpbp.2016.02.013.

    https://www.ncbi.nlm.nih.gov/pubmed/26964906
  54. Tomson et al. (2016). Effect of a human serotonin 5-HT2A receptor gene polymorphism on impulsivity: Dependence on cholesterol levels. Journal of Affective Disorders, 2016 doi: 10.1016/j.jad.2016.07.036.

    https://www.ncbi.nlm.nih.gov/pubmed/27455355
  55. Domínguez et al. (2016). A Highly Polymorphic Copy Number Variant in the NSF Gene is Associated with Cocaine Dependence, 2016 doi: 10.1038/srep31033.

    https://www.ncbi.nlm.nih.gov/pubmed/27498889
  56. Klein et al. (2016). Meta-analysis of the DRD5 VNTR in persistent ADHD, 2016 doi: 10.1016/j.euroneuro.2016.06.012.

    https://www.ncbi.nlm.nih.gov/pubmed/27480019
  57. Noordermeer et al. (2015). Neurocognitive Deficits in Attention-Deficit/Hyperactivity Disorder With and Without Comorbid Oppositional Defiant Disorder, 2015 doi: 10.1177/1087054715606216.
  58. Mostert J.C. et al. (2015). Similar Subgroups Based on Cognitive Performance Parse Heterogeneity in Adults With ADHD and Healthy Controls, 2015 doi: 10.1177/1087054715602332.
  59. Biedermann J. et al. (2005). Attention-deficit hyperactivity disorder, 2015 doi: 10.1016/S0140-6736(05)66915-2.
  60. Klein et al. (2015). Converging evidence does not support GIT1 as an ADHD risk gene, 2015 doi: 10.1002/ajmg.b.32327.

    http://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32327/abstract
  61. Vrijsen J et al. (2015). Interaction of the 5-HTTLPR and childhood trauma influences memory bias in healthy individuals, 2015 doi: 10.1016/j.jad.2015.06.008.

    https://www.ncbi.nlm.nih.gov/pubmed/26232751
  62. Rivero O et al. (2015). Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition, 2015 doi: 10.1038/tp.2015.152.

    http://www.nature.com/tp/journal/v5/n10/full/tp2015152a.html
  63. Drgonova J et al. (2016). Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice, 2016 doi: 10.2119/molmed.2015.00170.

    https://www.ncbi.nlm.nih.gov/pubmed/27579475
  64. Kiser D et al. (2015). Annual Research Review: The (epi)genetics of neurodevelopmental disorders in the era of whole-genome sequencing - unveiling the dark matter, 2015 doi: 10.1111/jcpp.12392.

    https://www.ncbi.nlm.nih.gov/pubmed/25677560
  65. Markova N et al. (2015). Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice, 2015 doi: 10.1016/j.pnpbp.2016.11.001.

    https://www.ncbi.nlm.nih.gov/pubmed/27825907
  66. Strekalova T et al. (2016). Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test, 2016 doi: 10.1155/2016/5098591.

    https://www.hindawi.com/journals/np/2016/5098591/
  67. Couch Y et al. (2016). Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice, 2016 doi: 10.1186/s12974-016-0572-0.

    https://www.ncbi.nlm.nih.gov/pubmed/27184538
  68. Morozova A. et al. (2016). Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats, 2016 doi: 10.1016/j.pnpbp.2016.03.003.

    https://www.ncbi.nlm.nih.gov/pubmed/27036099
  69. Strekalova T. et al. (2016). Insulin receptor sensitizer, dicholine succinate, prevents both Toll-like receptor 4 (TLR4) upregulation and affective changes induced by a high-cholesterol diet in mice, 2016 doi: 10.1016/j.jad.2016.02.045.

    https://www.ncbi.nlm.nih.gov/pubmed/26921863
  70. Buitelaar N. J. L. et al. (2015). ADHD in Childhood and/or Adulthood as a Risk Factor for Domestic Violence or Intimate Partner Violence: A Systematic Review, 2015 doi: 10.1177/1087054715587099.

    http://journals.sagepub.com/doi/pdf/10.1177/1087054715587099
  71. Herpers P.C.M. et al. (2016). Associations between high callous–unemotional traits and quality of life across youths with non-conduct disorder diagnoses, 2016 doi: 10.1007/s00787-015-0766-5.

    https://www.ncbi.nlm.nih.gov/pubmed/26362863
  72. Smeets K.C. et al. (2016). Are Proactive and Reactive Aggression Meaningful Distinctions in Adolescents? A Variable- and Person-Based Approach, 2016 doi: 10.1007/s10802-016-0149-5.

    https://www.ncbi.nlm.nih.gov/labs/articles/27113216/
  73. Brugman S. et al. (2016). Examining the reactive proactive questionnaire in adults in forensic and non-forensic settings: A variable- and person-based approach, 2016 doi: 10.1002/ab.21671.
  74. Blair R.J.R. et al. (2016). Neuro-cognitive system dysfunction and symptom sets: A review of fMRI studies in youth with conduct problems, 2016 doi: 10.1016/j.neubiorev.2016.10.022.
  75. Veroude K.V. et al. (2016). The link between callous-unemotional traits and neural mechanisms of reward processing: An fMRI study, 2016 doi: 10.1016/j.pscychresns.2016.08.005.

    https://www.ncbi.nlm.nih.gov/pubmed/27564545
  76. Persico A.M. et al. (2015). Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives, 2015 doi: 10.1016/j.euroneuro.2015.06.009.

    https://www.ncbi.nlm.nih.gov/pubmed/2616645
  77. Merker S. et al. (2017). SLC2A3 SNP and duplication influence cognitive processing and population-specific risk for ADHD., 2017 doi: 10.1111/jcpp.12702.

    https://www.ncbi.nlm.nih.gov/pubmed/28224622
  78. Veniaminova E. et al. (2017). Autism-like behaviours and memory deficits result from a Western diet in mice., 2017 doi: 10.1155/2017/9498247.

    https://www.ncbi.nlm.nih.gov/pubmed/28685102
  79. Strekalova T., Bazhenova N. et al. (2017). Pro-neurogenic, memory-enhancing and anti-stress effects of a novel fluorine gamma-carboline derivative, DF-302, with multi-target mechanism of action., 2017 doi: 10.1007/s12035-017-0745-6.

    https://www.ncbi.nlm.nih.gov/pubmed/28856531
  80. Waider J. et al. (2017). Genetically driven brain serotonin deficiency facilitates panic-like escape behavior in mice., 2017 doi: 10.1038/tp.2017.209.

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682603/
  81. Bodden C. et al. (2017). Impact of varying social experiences during life history on behaviour, gene expression, and vasopressin receptor gene methylation in mice., 2017 doi: 10.1038/s41598-017-09292-0.

    https://www.ncbi.nlm.nih.gov/pubmed/28821809/
  82. Forero A. et al. (2017). Cadherin-13, a risk factor for neurodevelopmental disorders, modulates dorsal raphe-prefrontal cortex serotonin subsystem development via radial glia interaction, 2017 doi: 10.3389/fncel.2017.00307.

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623013
  83. Cline B.H. et al. (2015). Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression., 2015 doi: 10.3389/fnbeh.2015.00037.

    https://www.ncbi.nlm.nih.gov/pubmed/25767439
  84. Stekalova T. et al. (2015). Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet., 2015 doi: 10.1016/j.bbi.2015.02.015.

    https://www.ncbi.nlm.nih.gov/pubmed/25712260
  85. Holz N. et al. (2018). Gene x environment interactions in conduct disorder: Implications for future treatments., 2018 doi: 10.1016/j.neubiorev.2016.08.017.

    https://www.ncbi.nlm.nih.gov/pubmed/27545756
  86. Sánches-Mora C. et al. (2015). Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder., 2015 doi: 10.1002/ajmg.b.32340.

    https://www.ncbi.nlm.nih.gov/pubmed/26174753
  87. Bakker M.J. et al. (2017). Practitioner Review: Psychological treatments for children and adolescents with conduct disorder problems - a systematic review and meta-analysis., 2017 doi: 10.1111/jcpp.12590.

    https://www.ncbi.nlm.nih.gov/pubmed/27501434
  88. Alemany S et al. (2015). New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder., 2015 doi: 10.1002/ajmg.b.32341.

    https://www.ncbi.nlm.nih.gov/pubmed/26174813
  89. Pagerols M. et al. (2017). Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder., 2017 doi: 10.1038/tpj.2015.89.

    https://www.ncbi.nlm.nih.gov/pubmed/26810137
  90. Garcia_Martinez I. et al. (2017). Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder., 2017 doi: 10.1038/s41598-017-05514-7.

    https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1038%2Fs41598-017-05514-7
  91. Pagerols M. et al. (2018). Integrative genomic analysis of methylphenidate response in attention-deficit/hyperactivity disorder., 2018 doi: 10.1038/s41598-018-20194-7.

    https://www.ncbi.nlm.nih.gov/pubmed/29382897
  92. Cabana-Dominguez J. et al. (2017). Association of the PLCB1 gene with drug dependence., 2017 doi: 10.1038/s41598-017-10207-2.

    https://www.ncbi.nlm.nih.gov/pubmed/28860459
  93. Demontis D. et al. (2017). Discovery Of The First Genome-Wide Significant Risk Loci For ADHD., 2017 https://doi.org/10.1101/145581

    https://www.biorxiv.org/content/biorxiv/early/2017/06/03/145581.full.pdf
  94. Grimm O. et al. (2018). Recent developments in the genetics of ADHD., 2018 doi: 10.1111/pcn.12673.

    https://www.ncbi.nlm.nih.gov/pubmed/29722101
  95. Grünewald L. et al. (2018). Expression of the ADHD candidate gene Diras2 in the brain., 2018 doi: 10.1007/s00702-018-1867-3.

    https://www.ncbi.nlm.nih.gov/pubmed/29488099
  96. Kopf J. et al. (2018). Neural correlates of response inhibition in patients with bipolar disorder during acute versus remitted phase., 2018 doi: 10.1080/15622975.2018.1428356.

    https://www.ncbi.nlm.nih.gov/pubmed/29338494
  97. Freudenberg F. et al. (2018). Challenges with modelling anxiety disorders: a possible hindrance for drug discovery., 2018 doi: 10.1080/17460441.2018.1418321.

    https://www.ncbi.nlm.nih.gov/pubmed/29240521
  98. Schartner C. et al. (2017). The regulation of tetraspanin 8 gene expression-A potential new mechanism in the pathogenesis of bipolar disorder., 2017 doi: 10.1002/ajmg.b.32571.

    https://www.ncbi.nlm.nih.gov/pubmed/28777493
  99. Grünewald L. et al. (2016). Functional Impact of An ADHD-Associated DIRAS2 Promoter Polymorphism., 2016 doi: 10.1038/npp.2016.113.

    https://www.ncbi.nlm.nih.gov/pubmed/27364329
  100. Lange M. et al. (2018). Pharmacological analysis of zebrafish lphn3.1 morphant larvae suggests that saturated dopaminergic signaling could underlie the ADHD-like locomotor hyperactivit., 2018 doi: 10.1016/j.pnpbp.2018.02.010.

    https://www.ncbi.nlm.nih.gov/pubmed/29496512
  101. Carreño Gutiérrez H. et al. (2018). Automatic quantification of juvenile zebrafish aggression., 2018 doi: 10.1016/j.jneumeth.2017.

    https://www.ncbi.nlm.nih.gov/pubmed/29274793
  102. Bitetti A. et al. (2018). MicroRNA degradation by a conserved target RNA regulates animal behavior., 2018 doi: 10.1038/s41594-018-0032-x.

    https://www.ncbi.nlm.nih.gov/pubmed/29483647
  103. Raasakka A. et al. (2018). Structure of the mouse acidic amino acid decarboxylase GADL1., 2018 doi: 10.1107/S2053230X17017848.

    https://www.ncbi.nlm.nih.gov/pubmed/29372909
  104. Myrum C. et al. (2017). Implication of the APP Gene in Intellectual Abilities., 2017 doi: 10.3233/JAD-170049.

    https://www.ncbi.nlm.nih.gov/pubmed/28671113
  105. Jacobsen K.K. et al. (2015). Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: Association with YWHAE., 2015 doi: 10.1002/ajmg.b.32339.

    https://www.ncbi.nlm.nih.gov/pubmed/26172220
  106. Eensoo D. et al. (2018). Risky driving and the persistent effect of a randomized intervention focusing on impulsivity: The role of the serotonin transporter promoter polymorphism., 2018 doi: 10.1016/j.aap.2018.01.021.

    https://www.ncbi.nlm.nih.gov/pubmed/29407665
  107. Tomson-Johanson K. et al. (2018). Low cholesterol, impulsivity and violence revisited., 2018 doi: 10.1097/MED.0000000000000395.

    https://www.ncbi.nlm.nih.gov/pubmed/29351110
  108. Zhang-James Y. et al. (2018). An integrated analysis of genes and functional pathways for aggression in human and rodent models., 2018 doi: 10.1038/s41380-018-0068-7.

    https://www.ncbi.nlm.nih.gov/pubmed/29858598
  109. Smeijers D. et al. (2017). Treatment Responsivity of Aggressive Forensic Psychiatric Outpatients., 2017 doi: 10.1177/0306624X17747052.

    https://www.ncbi.nlm.nih.gov/pubmed/29254396
  110. Smeijers D. et al. (2018). Associations Between Neurocognitive Characteristics, Treatment Outcome, and Dropout Among Aggressive Forensic Psychiatric Outpatients., 2018 doi: 10.1177/0306624X17750340.

    https://www.ncbi.nlm.nih.gov/pubmed/29291630
  111. Smeijers D. et al. (2017). Associations of multiple trauma types and MAOA with severe aggressive behavior and MAOA effects on training outcome., 2017 doi: 10.1016/j.euroneuro.2017.06.016.

    https://www.ncbi.nlm.nih.gov/pubmed/28673475
  112. Niermann H.C.M. et al. (2017). Defensive freezing links Hypothalamic-Pituitary-Adrenal-axis activity and internalizing symptoms in humans., 2017 doi: 10.1016/j.psyneuen.2017.05.001.

    https://www.ncbi.nlm.nih.gov/pubmed/28511048
  113. Niermann H.C.M. et al. (2018). Investigation of the Stability of Human Freezing-Like Responses to Social Threat From Mid to Late Adolescence., 2018 doi: 10.3389/fnbeh.2018.00097.

    https://www.ncbi.nlm.nih.gov/pubmed/29867396
  114. Van Dijk F.E. et al. (2017). Five factor model personality traits relate to adult attention-deficit/hyperactivity disorder but not to their distinct neurocognitive profiles., 2017 doi: 10.1016/j.psychres.2017.08.037.

    https://www.ncbi.nlm.nih.gov/pubmed/28844557
  115. Ruisch I.H. et al. (2018). Maternal substance use during pregnancy and offspring conduct problems: A meta-analysis., 2018 doi: 10.1016/j.neubiorev.2017.08.014.

    https://www.ncbi.nlm.nih.gov/pubmed/28847489
  116. Jager A. et al. (2017). Cortical control of aggression: GABA signalling in the anterior cingulate cortex., 2017 doi: 10.1016/j.euroneuro.2017.12.007.

    https://www.ncbi.nlm.nih.gov/pubmed/29274996
  117. Jager A. et al. (2018). Aggressive behavior in transgenic animal models: A systematic review., 2018 doi: 10.1016/j.neubiorev.2017.09.028.

    https://www.ncbi.nlm.nih.gov/pubmed/29895354
  118. Bours C.C.A.H. et al. (2018). Emotional face recognition in male adolescents with autism spectrum disorder or disruptive behavior disorder: an eye-tracking study., 2018 doi: 10.1007/s00787-018-1174-4.

    https://www.ncbi.nlm.nih.gov/pubmed/29922873
  119. Kong X.Z. et al. (2018). Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium., 2018 doi: 10.1073/pnas.1718418115.

    https://www.ncbi.nlm.nih.gov/pubmed/29764998
  120. van Donkelaar M.M.J. et al. (2018). Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes., 2018 doi: 10.3389/fnbeh.2018.00061.

    https://www.ncbi.nlm.nih.gov/pubmed/29666571
  121. van Donkelaar M.M.J. et al. (2017). Monoamine and neuroendocrine gene-sets associate with frustration-based aggression in a gender-specific manner., 2017 doi: 10.1016/j.euroneuro.2017.11.016.

    https://www.ncbi.nlm.nih.gov/pubmed/29191428
  122. Vrijsen J.N. et al. (2018). ADHD symptoms in healthy adults are associated with stressful life events and negative memory bias., 2018 doi: 10.1007/s12402-017-0241-x.

    https://www.ncbi.nlm.nih.gov/pubmed/29081022
  123. Reijnders M.R.F. et al. (2017). Variation in a range of mTOR-related genes associates with intracranial volume and intellectual disability., 2017 doi: 10.1038/s41467-017-00933-6.

    https://www.nature.com/articles/s41467-017-00933-6
  124. Noordermeer S.D.S. et al. (2017). Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder., 2017 doi: 10.1016/j.biopsych.2017.07.008.

    https://www.ncbi.nlm.nih.gov/pubmed/28911901
  125. Aarts E. et al. (2017). Gut microbiome in ADHD and its relation to neural reward anticipation., 2017 doi: 10.1371/journal.pone.0183509.

    https://www.ncbi.nlm.nih.gov/pubmed/28863139
  126. Wolfers T. et al. (2017). Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD., 2017 doi: 10.1503/jpn.160240.

    https://www.ncbi.nlm.nih.gov/pubmed/28832320
  127. van der Meer D. et al. (2017). Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: a random forest regression approach., 2017 doi: 10.1038/tp.2017.114.

    https://www.ncbi.nlm.nih.gov/pubmed/28585928
  128. Bralten J. et al. (2017). Autism spectrum disorders and autistic traits share genetics and biology., 2017 doi: 10.1038/mp.2017.98.

    https://www.ncbi.nlm.nih.gov/pubmed/28507316
  129. Noordermeer S.D.S. et al. (2017). Risk factors for comorbid oppositional defiant disorder in attention-deficit/hyperactivity disorder., 2017 doi: 10.1007/s00787-017-0972-4.

    https://www.ncbi.nlm.nih.gov/pubmed/28283834
  130. Ghirardi L. et al. (2018). The familial co-aggregation of ASD and ADHD: a register-based cohort study., 2018 doi: 10.1038/mp.2017.17.

    https://www.ncbi.nlm.nih.gov/pubmed/28242872
  131. van der Meer D. et al. (2017). Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition., 2017 doi: 10.1503/jpn.150350.

    https://www.ncbi.nlm.nih.gov/pubmed/28234207
  132. Klein M. et al. (2017). Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity., 2017 doi: 10.1016/j.neubiorev.2017.01.013.

    https://www.ncbi.nlm.nih.gov/pubmed/28159610
  133. Hibar D.P. et al. (2017). Novel genetic loci associated with hippocampal volume., 2017 doi: 10.1038/ncomms13624.

    https://www.ncbi.nlm.nih.gov/pubmed/28098162
  134. Oldehinkel M. et al. (2016). Functional connectivity in cortico-subcortical brain networks underlying reward processing in attention-deficit/hyperactivity disorder., 2016 doi: 10.1016/j.nicl.2016.10.006.

    https://www.ncbi.nlm.nih.gov/pubmed/27818941>
  135. Oldehinkel M. et al. (2016). Attention-Deficit/Hyperactivity Disorder symptoms coincide with altered striatal connectivit., 2016 doi: 10.1016/j.bpsc.2016.03.008.

    https://www.ncbi.nlm.nih.gov/pubmed/27812554>
  136. Klein M. et al. (2017). Imaging genetics of neurodevelopmental pathology., 2017 doi: 10.1002/ajmg.b.32542.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.b.32542>
  137. Roy A. et al. (2018). Family environment interacts with CRHR1 rs17689918 to predict mental health and behavioral outcomes., 2018 doi: 10.1016/j.pnpbp.2018.05.004.

    https://www.ncbi.nlm.nih.gov/pubmed/29772307
  138. Pavlov D. et al. (2017). Elucidating the functions of brain GSK3α: Possible synergy with GSK3β upregulation and reversal by antidepressant treatment in a mouse model of depressive-like behaviour., 2017 doi: 10.1016/j.bbr.2017.08.018.

    https://www.ncbi.nlm.nih.gov/pubmed/28803855
  139. Hibar D.P. et al. (2017). Novel genetic loci associated with hippocampal volume., 2017 doi: 10.1038/ncomms13624.

    https://www.ncbi.nlm.nih.gov/pubmed/28098162
  140. Grünewald L. et al. (2016). Functional Impact of An ADHD-Associated DIRAS2 Promoter Polymorphism., 2016 doi: 10.1038/npp.2016.113.

    https://www.ncbi.nlm.nih.gov/pubmed/27364329
  141. Geiger L. et al. (2018). Novelty modulates human striatal activation and prefrontal–striatal effective connectivity during working memory encoding., 2018 doi: 10.1007/s00429-018-1679-0.

    https://www.ncbi.nlm.nih.gov/pubmed/29752589
  142. Geiger Lvon Hohenberg. et al. (2018). Lateral habenula perturbation reduces default-mode network connectivity in a rat model of depression., 2018 doi: 10.1038/s41398-018-0121-y.

    https://www.nature.com/articles/s41398-018-0121-y
  143. von Hohenberg. et al. (2018). Lateral habenula perturbation reduces default-mode network connectivity in a rat model of depression., 2018 doi: 10.1038/s41398-018-0121-y.

    https://www.nature.com/articles/s41398-018-0121-y
  144. Holz N. E. et al. (2018). Early maternal care may counteract familial liability for psychopathology in the reward circuitry., 2018 doi: 10.1093/scan/nsy087.

    https://www.researchgate.net/publication/327917341_Early_maternal_care_may_counteract_familial_liability_for_psychopathology_in_the_reward_circuitry
  145. Holz N. E. et al. (2018). Gene x environment interactions in conduct disorder: Implications for future treatments., 2018 doi: 10.1016/j.neubiorev.2016.08.017.

    https://www.ncbi.nlm.nih.gov/pubmed/27545756
  146. Franke B. et al. (2018). Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan., 2018 doi: 10.1016/j.euroneuro.2018.08.001.

    https://www.ncbi.nlm.nih.gov/pubmed/30195575
  147. Corominas J. et al. (2018). Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing., 2018 doi: 10.1038/s41380-018-0210-6.

    https://www.ncbi.nlm.nih.gov/pubmed/30116028
  148. van der Meer D. et al. (2018). Anxiety modulates the relation between attention-deficit/hyperactivity disorder severity and working memory-related brain activity., 2018 doi: 10.1080/15622975.2017.1287952.

    https://www.ncbi.nlm.nih.gov/pubmed/28635543
  149. Spencer T .J. et al. (2018). Opiate Antagonists Do Not Interfere With the Clinical Benefits of Stimulants in ADHD., 2018 doi: 10.4088/JCP.16m11012.

    https://www.ncbi.nlm.nih.gov/pubmed/28640990
  150. Hess J.L. et al. (2018). Why is there selective subcortical vulnerability in ADHD? Clues from postmortem brain gene expression data., 2018 doi: 10.1038/mp.2017.242.

    https://www.ncbi.nlm.nih.gov/pubmed/29180674
  151. Faraone S. V. et al. (2018). The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities., 2018 doi: 10.1016/j.neubiorev.2018.02.001.

    https://www.ncbi.nlm.nih.gov/pubmed/29428394
  152. Abrams J. et al. (2018). Are Adult ADHD Patients Good Informants of Their Symptoms? A Qualitative Literature Review of Concordance Between Clinician and Self-Report ADHD Symptoms., 2018 doi: 10.1097/NMD.0000000000000870.

    https://www.ncbi.nlm.nih.gov/pubmed/30124570
  153. Adler L. A. et al. (2018). Establishing US norms for the Adult ADHD Self-Report Scale (ASRS-v1.1) and characterising symptom burden among adults with self-reported ADHD., 2018 doi: 10.1111/ijcp.13260.

    https://www.ncbi.nlm.nih.gov/pubmed/30239073
  154. Chen Q. et al. (2018). Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: A population-based cross-sectional study., 2018 doi: 10.1371/journal.pone.0204516.

    https://www.ncbi.nlm.nih.gov/pubmed/30256837
  155. Biederman J. et al. (2018). Does the course of manic symptoms in pediatric bipolar disorder impact the course of conduct disorder? Findings from four prospective datasets., 2018 doi: 10.1016/j.jad.2018.05.020.

    https://www.ncbi.nlm.nih.gov/pubmed/29890451
  156. Schoenmacker G.H. et al. (2018). Role of conduct problems in the relation between Attention-Deficit Hyperactivity disorder, substance use, and gaming., 2018 doi: 10.1016/j.euroneuro.2018.06.003.

    https://www.ncbi.nlm.nih.gov/pubmed/30292416
  157. Biederman J. et al. (2018). Informativeness of Self-Reports of ADHD Symptoms in Monitoring Response to Stimulant Treatment in Clinically Referred Adults With ADHD., 2018 doi: 10.1177/1087054718776425.

    https://www.ncbi.nlm.nih.gov/pubmed/29804496
  158. Chen Q. et al. (2018). Attention-deficit/hyperactivity disorder and clinically diagnosed obesity in adolescence and young adulthood: a register-based study in Sweden., 2018 doi: 10.1017/S0033291718002532 .

    https://www.ncbi.nlm.nih.gov/pubmed/30220266
  159. Biederman J. et al. (2018). Further Evidence of Morbidity and Dysfunction Associated With Subsyndromal ADHD in Clinically Referred Children., 2018 doi: 10.4088/JCP.17m11870.

    https://www.ncbi.nlm.nih.gov/pubmed/30086214
  160. Kiser D. P. et al. (2019). Early-life stress impairs developmental programming in Cadherin 13 (CDH13)-deficient mice., 2019 doi: 10.1016/j.pnpbp.2018.08.010.

    https://www.ncbi.nlm.nih.gov/pubmed/30165120
  161. Grünewald L. et al. (2018). Expression of the ADHD candidate gene Diras2 in the brain., 2018 doi: 10.1007/s00702-018-1867-3.

    https://www.ncbi.nlm.nih.gov/pubmed/29488099
  162. Norton W. H. J. et al. (2018). Screening for drugs to reduce aggression in zebrafish., 2018 doi: 10.1016/j.neuropharm.2018.10.023.

    https://www.ncbi.nlm.nih.gov/pubmed/30336150
  163. Demontis D. et al. (2018). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder., 2018 doi: 10.1038/s41588-018-0269-7.

    https://www.ncbi.nlm.nih.gov/pubmed/30478444
  164. Cabana-Domínguez J. et al. (2018). MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence., 2018 doi: 10.1038/s41398-018-0224-5.

    https://www.ncbi.nlm.nih.gov/pubmed/30166527
  165. Pineda-Cirera L. et al. (2018). Evaluation of previous substance dependence genome-wide significant findings in a Spanish sample., 2018 doi: 10.1016/j.drugalcdep.2018.03.013.

    https://www.ncbi.nlm.nih.gov/pubmed/29715653
  166. Auth C.S. et al. (2018). Differential anxiety-related behaviours and brain activation in Tph2-deficient female mice exposed to adverse early environment., 2018 doi: 10.1016/j.euroneuro.2018.07.103.

    https://www.ncbi.nlm.nih.gov/pubmed/30146458
  167. Braun U. et al. (2016). Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function., 2016 doi: 10.1073/pnas.1608819113.

    https://www.pnas.org/content/113/44/12568
  168. Cao H. et al. (2016). Altered Functional Subnetwork During Emotional Face Processing., 2016 doi: 10.1001/jamapsychiatry.2016.0161.

    https://www.ncbi.nlm.nih.gov/pubmed/27145286
  169. Schneider M. et al. (2017). Altered DLPFC–Hippocampus Connectivity During Working Memory: Independent Replication and Disorder Specificity of a Putative Genetic Risk Phenotype for Schizophrenia., 2017 doi: 10.1093/schbul/sbx001.

    https://www.ncbi.nlm.nih.gov/pubmed/28207073
  170. Sutcliffe G. et al. (2016). Neuroimaging Intermediate Phenotypes of Executive Control Dysfunction in Schizophrenia., 2016 doi: 10.1016/j.bpsc.2016.03.002.

    https://www.ncbi.nlm.nih.gov/pubmed/29560881
  171. Tost H. et al. (2015). Environmental influence in the brain, human welfare and mental health., 2015 doi: 10.1038/nn.4108.

    https://www.ncbi.nlm.nih.gov/pubmed/26404717
  172. Freitag C.M. et al. (2018). Focused issue on conduct disorder and aggressive behaviour., 2018 doi: 10.1007/s00787-018-1216-y.

    https://www.ncbi.nlm.nih.gov/pubmed/30143888
  173. Mogavero F. et al. (2018). Clock genes, ADHD and aggression., 2018 doi: 10.1016/j.neubiorev.2016.11.002.

    https://www.ncbi.nlm.nih.gov/pubmed/27836462
  174. Niermann H.C.M. et al. (2018). The relation between infant freezing and the development of internalizing symptoms in adolescence: A prospective longitudinal study., 2018 doi: 10.1111/desc.12763.

    https://www.ncbi.nlm.nih.gov/pubmed/30318656
  175. Bakker-Huvenaars M.J. et al. (2018). Saliva oxytocin, cortisol, and testosterone levels in adolescent boys with autism spectrum disorder, oppositional defiant disorder/conduct disorder and typically developing individuals., 2018 doi: 10.1016/j.euroneuro.2018.07.097.

    https://www.ncbi.nlm.nih.gov/pubmed/30201120